
LA-UR-15-27806 (Accepted Manuscript)

Analyzing the Effectiveness of a Frame-Level Redundancy Scrubbing
Technique for SRAM-based FPGAs

Tonfat, Jorge
Kastensmidt, Fernanda Lima
Rech, Paolo
Reis, Ricardo
Quinn, Heather Marie

Provided by the author(s) and the Los Alamos National Laboratory (2016-11-23).

To be published in: IEEE Transactions on Nuclear Science

DOI to publisher's version: 10.1109/TNS.2015.2489601

Permalink to record: http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-15-27806

Disclaimer:
Approved for public release. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos
National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the
Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

 1

Abstract—Radiation effects such as soft errors are the major

threat to the reliability of SRAM-based FPGAs. This work
analyzes the effectiveness in correcting soft errors of a novel
scrubbing technique using internal frame redundancy called
Frame-level Redundancy Scrubbing (FLR-scrubbing). This
correction technique can be implemented in a coarse grain TMR
design. The FLR-scrubbing technique was implemented on a
mid-size Xilinx Virtex-5 FPGA device used as a case study. The
FLR-scrubbing technique was tested under neutron radiation
and fault injection. Implementation results demonstrated
minimum area and energy consumption overhead when
compared to other techniques. The time to repair the fault is also
improved by using the Internal Configuration Access Port
(ICAP). Neutron radiation test results demonstrated that the
proposed technique is suitable for correcting accumulated SEUs
and MBUs.

Index Terms— Fault tolerance, field programmable gate
arrays, radiation effects.

I. INTRODUCTION
RAM-based FPGAs are attractive to critical applications
due to their high performance, reduced power

consumption, and reconfiguration capability. However,
FPGAs are highly susceptible to radiation effects such as soft
errors in the SRAM configuration memory. These soft errors
have a persistent effect and will remain until the restoration of
the original content.

The configuration memory of SRAM-based FPGAs is
arranged into small segments named “configuration frames”,
and it represents the largest portion of all the memory cells in
the device. Other factors that increase the susceptibility to soft
errors are the reduction of the transistor size and the lower
voltage operations of these SRAM memory cells [1].

When an ionizing particle flips a single memory cell, the
event is called Single Event Upset (SEU). Moreover, when it

Manuscript received XXX; revised XXX; accepted XXX. This work was
supported in part by CNPq, FAPERGS and CAPES.

J. Tonfat, F. L. Kastensmidt, P. Rech and Ricardo Reis are with
PGMICRO, UFRGS, Porto Alegre 91501-970, Brazil (e-mail:
jorgetonfat@ieee.org; fglima@inf.ufrgs.br; prech@inf.ufrgs.br;
reis@inf.ufrgs.br).

H. Quinn is with Los Alamos National Laboratory, Los Alamos, NM
87545 USA (e-mail: hquinn@lanl.gov).

impacts multiple memory cells due to charge sharing, the
event is called Multiple Cell Upset (MCU). If the multiple
corrupted bits belongs to the same memory word (or frame for
FPGAs), the MCU is called Multiple Bit Upset (MBU). In the
first families of SRAM-based FPGAs, MBU events
represented a smaller percentage of total Single Event Effects
(SEEs) [2] [3]. However, in recent technology nodes (65nm
and beyond) the percentage of MBU events is higher [3].
Additionally, the trend is to reduce the technology node in
future devices, which will increase the MBUs probability of
occurrence. MBU events can be up to 10% of the total bit
upsets observed in the configuration memory bits of an FPGA
fabricated in 28nm technology [4].

An effective method to correct bit upsets in the
configuration memory is memory scrubbing. The original
configuration memory is restored using the dynamic
reconfiguration feature of FPGAs. Different scrubbing
methodologies have been proposed in the literature for Xilinx
FPGAs [5] based on Error Correction Codes (ECC) or
configuration data redundancy. In this work, we use a novel
scrubbing technique (FLR-scrubbing) that can be implemented
in a coarse grain TMR design. It is based on having each
redundant TMR domain with the same configuration frame
information to allow vote out the frames copies to restore
themselves. This method achieves low area overhead and low
energy consumption, also a reduced time to repair a bit upset
when compared to other works in the literature [6], which are
based on ECC or external reference (golden) memory.

The effectiveness of this novel scrubbing technique to
correct multiple accumulated bit upsets in the configuration
memory is analyzed by fault injection and radiation
experiments. The FLR-scrubbing technique was implemented
on a mid-size Xilinx Virtex-5 FPGA device used as a case
study.

The rest of the paper is organized as follows: Section II
presents selected related works. Section III describes the FLR-
scrubbing technique. Implementation results and comparisons
with other similar works are presented in Section IV. In
Section V are given the characteristics of the methodology to
evaluate the effectiveness of the FLR-scrubbing. The analysis
of the neutron radiation results is provided in Section VI. A
complementary fault injection campaign is presented in

Analyzing the Effectiveness of a Frame-level
Redundancy Scrubbing Technique for SRAM-

based FPGAs
Jorge Tonfat, Member, IEEE, Fernanda Lima Kastensmidt, Member, IEEE, Paolo Rech, Member,

IEEE, Ricardo Reis, Senior Member, IEEE, and Heather M. Quinn, Senior Member, IEEE

S

 2

Section VII with the objective of finding the maximum
number of accumulated bit upsets the technique can correct in
a determined area. Finally, conclusions and future work are
discussed in Section VIII.

II. RELATED WORK
Fault masking techniques such as Triple Modular

Redundancy (TMR) are used to improve the radiation
tolerance of circuits implemented in SRAM-based FPGAs.
Still, it is necessary to avoid bit upset accumulation in the
configuration memory with a correction mechanism to
increase the reliability of the circuit [7].

Memory scrubbing is a well-known correction method for
the configuration memory of SRAM-based FPGAs [5] and it
can be implemented with different architectures and
methodologies.

The circuit that implements the memory scrubbing is
commonly known as a scrubber, and it can be implemented
externally or internally to the FPGA as shown in [8]. An
external scrubber uses external configuration ports, such as the
SelectMAP (Xilinx) or JTAG port, to access the configuration
memory.

On the other hand, internal scrubbers use the ICAP (Internal
Configuration Access Port) block [9] in Xilinx FPGAs. This
port has the same interface as the SelectMAP port, but it can
be accessed from the internal configurable logic. External
scrubbers are presumed to be more radiation tolerant than
internal scrubbers since they can be implemented as a rad-hard
ASIC or in a rad-hard antifuse-based FPGAs. In [8] is
presented a comparison of the reliability between an external
and an internal scrubber. Results show that an external
scrubber has an improved correction capability (corrected all
SEUs in the configuration memory) and does not present any
SEFI that required a power cycle in contrast to the results
obtained from the internal scrubber. However, it is possible to
apply hardened by design techniques to internal scrubbers to
improve its reliability as shown in [10] and [11].

Fig. 1 depicts two possible scenarios when multiple bit
upsets occur in configuration frames. When an impinging
particle corrupts cells belonging to different frames, provoking
at most one bit upset per frame, the event is called an inter-
frame MBU. When an impinging particle corrupts cells
belonging to the same frame, provoking multiple bit upsets,
this event is called intra-frame MBU. This difference is
important when Error Correction Codes (ECC) techniques are
applied to repair frames, as the current ECCs usually correct
single bit upsets and detect at most two upsets per frame.

Since Xilinx Virtex-4 FPGAs, all FPGAs come with a self-
correction mechanism that uses Single Error Correction
Double Error Detection (SECDED) ECC and Cyclic
Redundancy Check (CRC). SECDED is implemented in each
configuration frame, and CRC is calculated for the whole
configuration memory. It is calculated the ECC syndrome of
each frame to find the bit upset position and then correct it. It
is the fastest method to correct a fault because it only needs to
read and write one frame. The main drawback of the technique
is its limited correction capability. Only one upset per frame

can be corrected and at most two upsets per frame can be
detected. In other words, SECDED ECC will correct inter-
frame MBUs but only detect intra-frame MBUs. Xilinx offers
a soft-core named Xilinx SEU Controller [16] to manage the
self-correction mechanism of Virtex-5 FPGAs.

In this work, the proposed scrubbing technique can correct
any multiple bit upset pattern, with equivalent upset repair
time of the Xilinx self-correction mechanism based on ECC.

More recently, Xilinx offered a new soft-core named Soft
Error Mitigation (SEM) Controller for the 7-series family [12]
that also uses the ICAP interface. This core improves the
capability of the previous one by combining the SECDED and
the CRC features. Now it can correct up to two adjacent bit
upsets in one frame. Moreover, this core offers the possibility
to correct the configuration memory by replacing it with a
golden external reference. This reference is a copy of the
configuration memory, usually stored in an external rad-hard
memory.

This core can correct intra-frame MBUs with any number of
bit upsets by using an external memory reference. However,
using this memory in each scrub cycle, increments the power
consumption of the system; and the upset repair time is limited
by the reading access time of this external memory. Usually,
the external memory is slower than the FPGA configuration
memory. For example in our case study, the ICAP port needs
98 clock cycles running at a maximum frequency of 100 MHz
to read one frame. Instead, it is required 574 cycles running at
50 MHz to read one frame from an external flash memory.
This approach increments the Mean Time to Repair (MTTR).

Some scrubbing techniques have been proposed to avoid the
use of an external memory and maintain the capability to
correct intra-frames MBUs. In [13] is presented a self-
reference inter-FPGA scrubber, so no external memory is
used. In this case is applied a coarse grain TMR at device-
level, so at least three identical FPGAs are needed to
implement this technique. Each FPGA has the same
configuration data. Consequently, the power consumption is
incremented at least three times. This technique also requires
another device to hold the inter-FPGA scrubber logic and the
output majority voter of the outputs of each FPGA.

In [14], it is presented another approach to protect frames
against MBUs. An interleaved 2-D parity scheme is used to
detect upsets in the configuration memory. These extra parity
bits are stored in BRAM blocks. In this work, the detection
capability is conditioned to the MBU pattern. Moreover, the
correction scheme is based on a type of ECC named Erasure
Codes. In this scheme, the configuration frames are grouped in

Fig. 1. Examples of Inter-Frame and Intra-Frame Multiple bit upsets.

 3

clusters, and for each cluster, a redundant frame with parity
information is needed. So, once a faulty frame is detected, the
scrubber needs to read all the frames in the cluster of the
faulty frame to reconstruct the original information.
Consequently, the upset repair latency depends on the size of
the cluster.

III. PROPOSED FRAME-LEVEL REDUNDANCY SCRUBBING
TECHNIQUE (FLR-SCRUBBING)

The proposed scrubbing technique depends on a coarse
grain TMR design, where each TMR domain has the same
frame data. So, each configuration frame of the TMR design is
triplicated in the FPGA. Therefore, any frame of the TMR
design can be repaired using the information of the other two
identical frames. In this proposed technique, coarse grain
TMR is used to mask faults at the circuit level and also to
enable the correction of the faults in the configuration
memory.

The description of the FLR-scrubbing technique is divided
into two parts:

• In the first part, the process to generate the coarse grain
TMR circuit with a customized design flow is detailed. This
process ensures that the configuration frames in each TMR
domain are the same.

• In the second part, a new scrubbing logic that uses the
information of the triplicated configuration frames to correct
bit upsets is described.

 Fig. 2 shows a block diagram of a coarse grain TMR design
implemented using this technique.

A. Customized Design Flow
The TMR design needs a particular placement to obtain the

same configuration frames for each TMR domain. Also, each
TMR domain should be implemented in the FPGA with same
resources and routing.

The placement of each TMR domain is obtained by
placement constraints, and it depends on the structure of the
configuration memory of the target FPGA. In Xilinx FPGAs,
the configuration memory is structured as an array of
configuration frames vertically placed in the matrix. One

frame fits into a single row, and each column may have many
vertical frames. For example in a Xilinx Virtex-5 FPGA, a
CLB row and column has 36 frames each one with 1312 bits
disposed vertically. Consequently, the height of a frame has
1312 bits, and each row has the height of a frame. TMR
domains must be placed vertically aligned, and covering an
integer number of rows, as shown in Fig. 2.

This technique cannot be applied to the majority voter due
to the limitations of triplicating the majority voter with three
identical placements of logic and inputs. So, there are two
possible solutions to correct upsets in the voters. The first one
is to have a copy of the majority voter configuration frames in
a memory and load this frames when needed to restore the
corrupted frames of the majority voter. The second solution is
to place the voter outside the FPGA. This option implies the
use of another device as a rad-hard antifuse FPGA; however, it
may increase the system complexity and board area, but
assuring the voter functionality under radiation effects.

To obtain a coarse grain TMR design, where each TMR
domain is synthesized, placed and routed in the same manner,
it is proposed a customized design flow as shown in Fig. 3.
This design flow is partially based on the Xilinx Standard
design flow that uses the commercial Xilinx tools to generate
an FPGA bitstream from a hardware description of the design;
and it is also based on the RapidSmith tool [15], an academic
tool to generate Hard Macro Blocks (HMB) that assures that
each TMR domain has the same configuration frames.

These HMB are used to implement each of the TMR
domains because these blocks are already placed and routed
designs that can be instantiated in an FPGA design.

The proposed design flow begins with the generation of a
placed and routed circuit from the original design with the
Xilinx standard design flow. Then, the RapidSmith tool
receives the placed and routed circuit in an NCD format and
creates the HMB with an NMC format.

The second step is to create a new design project, which
includes the three instances of the HMB with the placement
constraints. The voter of the coarse grain TMR design and the
scrubber circuit can be optionally included in the project
because they can be implemented outside the FPGA. Xilinx

Fig. 2. Block diagram of the frame redundancy scheme based on a coarse
grain TMR design.

Fig. 3. Customized design flow.

 4

tools support the combination of HDL designs with HMB to
generate the final bitstream.

B. The Scrubbing Technique
The customized design flow ensures that the three TMR

domains have the same configuration frames. The FLR-
scrubbing technique uses this information to correct these
regions.

The scrubber circuit needs to be configured with the
location of the three TMR domains. When the scrubber begins
a scrub cycle, it reads the first frame of each TMR domain.
Then, the scrubber executes a bit level majority voting of the
three frames and creates a fault-free (voted) frame. In the best-
case scenario, none of the frames needs to be corrected, so the
scrubber moves to the next frame position of each TMR
domain. If any of the three frames is corrupted, the scrubber
replaces it with the fault-free (voted) frame.

In the worst-case scenario, three frames are corrupted due to
the accumulation of bit upsets. The scrubbing technique will
be able to correct all the upsets if there is no more than one
upset per each relative bit position, as shown in Fig. 4. Please
note that the frame from the TMR domain 1 has an MBU,
which would not be corrected by ECC [16], but because our
method votes bit by bit, the MBU of the frame from TMR
domain 1 will be voted out correctly.

The correct execution of the scrubbing is based on the
assumption that at most one of the three bits voted is faulty.
This scenario is expected because the three bits compared by
the voter are not physically adjacent, so it is very unlikely to
have multiple bit upsets in two of the three bits. We have not
observed such cases under radiation to an accumulation up to
274 bit upsets in average. However, if such unlikely case
occurs, the scrubber will not detect nor correct the frames and
golden bitstream must be loaded from an external memory.

IV. IMPLEMENTATION RESULTS
The FLR-Scrubbing technique is implemented into a Xilinx

Virtex-5 FPGA, part XC5VLX50T-FFG1136. This device is
manufactured with a 65 nm technology, and it has a nominal
core voltage of 1.0V. It is worth noting that although, in this
study we consider Xilinx FPGAs, the proposed technique is
generic and extendable to any SRAM-based FPGA that offers

TABLE I

AREA COMPARISON RESULTS

Scrubbing Scheme CLBs BRAMs External
Memory

Work in [14] a 1100 (6%) 4 (1%) No

Xilinx SEU Controller [16] 98 (3%) 1 (2%) No

Xilinx SEM Controller [12] b 108 (2%) 3 (1%) Yes

Blind Scrubbing (TMR) 341 (10%) 12 (20%) Yes

FLR-SCRUBBING (TMR) 113 (3%) 6 (10%) No
a implemented for a Virtex-6 VLX240T FPGA with 50 clusters and TMR
redundancy. In this device, one frame has 2,592 bits.
b implemented for an Artix-7 A100T FPGA without optional features. In this
device, one frame has 3,232 bits.

configuration memory readback. The scrubber circuit is within
the FPGA, and it uses the ICAP block to access the
configuration memory. This block can work at a maximum
frequency of 100MHz with a 32-bit data interface.

A. Area Overhead
The area overhead of the FLR-scrubbing technique is low,

and it corresponds to the area of the scrubber circuit because it
does not need any extra memory to store frame parity bits or
copies of the original frames. When comparing to techniques
such as [14] that need extra memory to store parity bits or [8]
[12] that needs external memory to read the original (golden)
configuration memory, our method can show a good
advantage. The area overhead of the FLR-scrubbing technique
is also independent of the size of the FPGA, and it is similar to
Xilinx SEU Controller [16]. The area of Xilinx SEM
Controller [12] depends on the size of the FPGA and the
selected error correction method that can be based on the
embedded ECC bits only, a combination of ECC and CRC or
the external golden memory.

Related works compared in this paper [12],[14],[16] do not
mention any mitigation technique for the scrubber circuit. In
our method, we propose to triplicate the scrubber to improve
the reliability. The presented area considers the triplication of
the scrubber circuit. Table I presents our results compared
with previous works.

B. Time to Repair One Configuration Frame
The time to repair one frame is the time needed to correct

one or more bit upsets in one configuration frame. As
mentioned in section III, in the proposed scheme, not all the
configuration frames are scanned. Only the configuration
frames of the TMR circuit are analyzed. These frames contain
the potential bits that, if corrupted, can generate an error in the
circuit. In our case, the time to repair one frame depends on
the time needed to read the three selected frames and the time
to write the fault-free (voted) frame.

The work in [14] needs to read a cluster of configuration
frames to correct one frame. Reducing the number of frames
per cluster, reduces the time to repair one frame but
increments the area overhead.

Fig. 4. Procedure to correct three identical frames with bit-level majority
voting.

 5

TABLE III
COMPARISON OF ENERGY AND POWER CONSUMPTION FOR THE FLR-SCRUBBING TECHNIQUE AND BLIND SCRUBBING

FLR-scrubbing (TMR) Blind Scrubbing (TMR)

Parameter FPGA Core Source (1.0 V) FPGA Core Source (1.0 V) Flash Memory Source (1.8 V) All Sources

Dynamic Power (RMS) 33.24 mW 21.2 mW 3.93 mW 25.13 mW

Scrub cycle time 3.67 ms @ 50MHz 178.55 ms @ 50MHz

Energy per scrub cycle 121.9 µJ 3.785 mJ 0.7 mJ 4.485 mJ

Number of protected
frames 1386 8376 (all the device)

Energy to scrub a frame
(Escrub-frame) 87.9 nJ 451.9 nJ (84.3%) 83.89 nJ (15.7 %) 535.79 nJ

TABLE II

COMPARISON OF THE TIME TO REPAIR ONE FRAME

Scrubbing Scheme Characteristics Time to repair
one frame (ms)

Work in [14] a Uses BRAM to store
parity frame bits 0.351

Xilinx SEU Controller [16] The scrubber is based on
a PicoBlaze 0.240

Xilinx SEM Controller [12] b Uses an external memory
(replace method) 0.012

Blind Scrubbing (TMR) Uses an external memory 0.021

FLR-SCRUBBING (TMR) BRAM or external
memory is not needed 0.005

a implemented for a Virtex-6 VLX240T FPGA with 50 clusters and TMR
redundancy. In this device, one frame has 2,592 bits.
b implemented for an Artix-7 A100T FPGA without optional features. In this
device, one frame has 3,232 bits.

The Xilinx SEU Controller [16] should be the fastest
approach because the procedure to repair one frame needs
only to read the corrupted frame and use the internal ECC bits
to correct one single bit upset per frame. However, it is
implemented with an 8-bit PicoBlaze microcontroller, so the
performance of the scrubber is reduced.

The time to access the external memory is slow compared
to the time to access the internal frame using the ICAP. As
shown in [17], the relation between both access times can be
nearly 100 times. Consequently, the time to repair by using
Xilinx SEM controller [12] is much higher than the FLR-
scrubbing technique as it uses the external memory access.

The results between the proposed method and other
approaches are summarized in Table II.

C. Energy Consumption
We cannot neglect the power overhead imposed by the

configuration memory scrubbing. The power consumption of
the scrubbing process depends on the readback or scrub rate
and the scrub methodology adopted. So, the energy consumed
per configuration frame (Escrub-frame) was used as a parameter to
compare different scrubbing methods. This parameter will
give us a better idea of the energy efficiency of the technique
and is independent of the scrub rate or the scrub methodology.
A detailed description of the process to measure this parameter
is found in [6].

We compare the energy efficiency of the FLR-scrubbing
technique against a blind scrubbing methodology. We decide

to choose the blind scrubbing methodology as a reference
point since it implements the simplest scrubbing methodology.
The blind scrubber implemented uses an external flash
memory with a 16-bit parallel interface.

The energy consumed by the FLR-scrubbing technique
comes only from the FPGA core. On the other hand, the blind
scrubbing methodology consumes power from the FPGA core
and the external flash memory.

The results are summarized in Table III. It is observed that
the energy consumption to scrub one frame of the FLR-
scrubbing is at least six times less than the blind scrubbing.
The energy consumption does not depend on the scrubbing
rate or the methodology.

In the comparison, the blind scrubber covers all the device
configuration frames. On the other hand, the FLR-scrubber is
only correcting a specific area of the FPGA where the
functional design is placed. It is impossible to cover the whole
FPGA because the location of the ICAP block and the internal
scrubber logic prohibits the implementation of the proposed
customized design flow explained in Section III.A. This issue
can be solved by implementing the scrubber outside of the
FPGA.

V. EXPERIMENTAL METHODOLOGY

A. Device Under Test (DUT) and Neutron beam
The FLR-Scrubbing technique was tested into the same

Xilinx Virtex-5 FPGA, part XC5VLX50T-FFG1136.
Experiments were performed at Los Alamos National
Laboratory (LANL), Los Alamos Neutron Science Center
(LANSCE) Irradiation of Chips and Electronics House II in
December 2014. The FPGA device was tested at normal
incidence with an approximated neutron flux of 1.43×106
(n/cm2×s). The neutron energy spectrum resembles the
atmospheric one between 1 and 750 MeV [18].

B. Radiation test setup
The board was placed in the radiation chamber and was

connected to a host computer via two USB connections. The
first connection is used for the FPGA configuration and
readback via JTAG while the second connection is used for
the RS232-C communication with the scrubber.

The objective of the test is to analyze the efficiency of the
proposed scrubbing methodology to correct multiple

 6

accumulated SEUs and MBUs. Therefore, the scrubber is
protected with TMR.

Fig. 5 shows the placement of the scrubber, and the three
TMR domain zones that the FLR-scrubbing technique
protects. The scrubber protects an area of 1,386 configuration
frames, where the TMR design is located. This area represents
720 CLBs (20 % of device CLBs) and 24 18K BRAM blocks
(20 % of device BRAM blocks).

The test procedure starts with the configuration of the
FPGA, including the scrubber circuit and the TMR protected
zone. The FPGA is exposed to radiation and to the
accumulation of bit upsets in the configuration memory. The
FLR-scrubbing technique is configured with two pre-defined
scrubbing rate during the test: one of 30 minutes and other one
of 60 minutes. During the accumulation period, periodic
readbacks are performed with intervals of 5 minutes to analyze
the accumulation of upsets. So, once 30 minutes or 60 minutes
are reached, the FLR-scrubbing technique is activated to
correct the TMR protected zone.

In order to save every scrubbing execution in a log file,
when the scrubber finds bit upsets in the TMR protected zone,
it transmits to the host computer the frame address of
corrupted frames. The host PC executes a last readback to
verify if TMR protected zone was correctly scrubbed and if
there is no remaining bit upsets. The host PC reconfigures the
FPGA with the original bitstream and a new run begins.

VI. NEUTRON RADIATION RESULTS

Experimental results are classified in four cases:
• Case 1: The scrubber sends a correct report to the host

PC, and the readback files confirm the right operation
of the scrubber.

TABLE IV

CLASSIFICATION OF RESULTS

 Avg. acc.
upsets

Total
runs

Case
1

Case
2

Case
3

Case
4

Scrub rate 1
(30 min) 145.7 33 87.8% 6.1% 6.1% 0%

Scrub rate 2
(60 min) 274 30 66.7% 26.7% 3.3% 3.3%

• Case 2: The scrubber sends a wrong response to the

host PC, and the readback files confirm an error on the
scrubber.

• Case 3: The scrubber sends a correct report to the host
PC, but the readback files present a wrong scrubbing
correction.

• Case 4: The scrubber sends a wrong response to the
host PC, but the readback files present a correct
scrubbing operation.

The percentage of occurrence of the four cases (1 to 4) is

shown in Table IV. One can see the average number of
accumulated upsets per radiation test runs, the number of
radiation test runs and the percentage of occurrence of each
one of the four cases described above.

Case 1 represents the correct behavior of the scrubber. In
this case, the TMR in the scrubber was adequate to mask any
functional error, and the proposed technique was able to
correct all the accumulated bit-flips in the protected area. A
graphical view of readback files before and after the scrubbing
is applied is shown in Fig. 6.

Cases 2, 3 and 4 are wrong behaviors of the scrubber. Cases
2 and 4 are detectable errors since the response of the scrubber
shows a functional error. It is not possible to diagnose if the
functional error is in the scrubber circuit or the internal
configuration controller (ICAP) of the FPGA. Fig. 7 shows a
representative example of a wrong behavior.

Case 3 is an undetectable functional error that was only
observed after the analysis of the readback files. This case is
the candidate case for finding an example where the scrubbing
technique is not able to correct or detect a fault when, as
described in section III.B, more than one bit of the same
f

(a)

(b)

Fig. 6. Graphical view of readbacks of a correct run (case 1). The spots are
bit upsets in the configuration memory. (a) Readback just before the scrubber
is activated. (b) Readback after the scrubber finished.

Fig. 5. Placement of the TMR scrubber and the three TMR domain zones on
a Virtex-5 VLX50T.

 7

TABLE V

CROSS-SECTION AND FAILURE IN TIME AT NYC
 cross-section (cm2) FIT

Scrub rate 1 (30 min) 4.41E-11 5.73
Scrub rate 2 (60 min) 6.59E-11 8.57

Xilinx SEU
Controller [16] N/A 8.6

relative bits position of the voted frames has an upset.
However, after the analysis of the readback files, it was not
found any evidence of such scenario. All the runs, when the
scrubber failed to correct the configuration memory of the
protected area, were due to a functional error in the scrubber
itself or because of a Single Event Functional Interrupt (SEFI)
in the ICAP block. So, this means that the error was in the
scrubber and not in the technique itself.

Table V presents the cross-section and Failures in Time
(FIT) results of the scrubber circuit considering the three cases
of functional errors observed during the tests. As expected, the
reliability of the scrubber is reduced when more bit-flips are
accumulated. The FIT is obtained considering a flux of 13
neutrons /(cm2×h) (The New York City reference flux [19]).
As a reference, it is also mentioned the estimated soft error
rate of the Xilinx SEU Controller [16]. Please note that in this
radiation test the focus is to demonstrate the effectiveness of
the FLR-scrubbing technique and not the reliability of the
scrubber. Nevertheless, the scrubber reliability is critical for a
real application.

VII. FAULT INJECTION ANALYSIS
The analysis of the results of the neutron radiation

experiment showed that the FLR-scrubbing technique was not
defeated due to accumulated bit upsets in the protected area.
The objective of the fault injection campaign is to determine
the maximum number of accumulated bit upsets that the
scrubbing mechanism can correct.

The fault injector used in this fault injection test is
described in [20]. The fault injector is also implemented in the
FPGA and shares the ICAP block with the scrubber circuit.
The emulated upsets are a combination of random generated

TABLE VI
FAULT INJECTION RESULTS

Average maximum
accumulated SEUs corrected

1136.6 (0.06% of total bits in the
evaluated area)

Standard deviation (σ) 562.5

SEUs locations and locations recorded from previously
accelerated neutron radiation tests. The scrubber protects the
same area mentioned in the neutron radiation test (1,386
frames), and the fault injector is constrained to inject faults in
the same area protected by the scrubbing technique.

Fig. 8 shows the final placement of the scrubber, the fault
injector and the three identical regions where the TMR design
is located.

The methodology to find the maximum number of
accumulated SEUs was to inject faults in steps of 10 faults per
injection and then activate the scrubber to analyze if all the
faults were corrected. When faults remain after executing the
scrubbing mechanism, the fault injection campaign is ended.

One hundred fault injection campaigns were performed, and
more than 113,600 faults were injected. The results are
summarized in Table VI.

The results show that the technique can correct more than
one thousand faults on average in the protected area. This
value represents a small percentage of the total configuration
bits in this area, but it represents a high accumulation time of
faults in a real environment.

The maximum number of accumulated bit upsets obtained
in the fault injection campaign is ten times higher than the bit
upsets accumulated during the test. These results can explain
why in the neutron radiation test, we could not find a run
where the scrubbing technique failed due to the massive
accumulation of faults in the protected area.

(a)

(b)

Fig. 7. Graphical view of readbacks of an incorrect run (cases 2 and 3). (a)
Readback just before the scrubber is activated. (b) Readback after the
scrubber finished.

Fig. 8. Placement of the scrubber, fault injector and the three TMR domain
zones on a Virtex-5 VLX50T.

 8

VIII. CONCLUSIONS AND FUTURE WORK
We have presented an experimental evaluation of a novel

scrubbing technique. This technique presents good
characteristics in terms of area and energy overhead with low
repair latency compared with other solutions. Radiation
experiment results and fault injection campaigns have
demonstrated the effectiveness of the proposed technique to
correct MBU in the configuration memory. The FLR-
scrubbing technique was able to restore correctly all the
frames under radiation. However, when upsets occurred in the
scrubber circuit or the ICAP logic, errors were observed after
the execution of the scrubbing. Future work has to focus on
the improvement of the reliability of the scrubber circuit to
reduce the wrong behaviors showed in the radiation results
and also some possible fault tolerant techniques in the ICAP.
A mechanism of self-test before scrubbing may be needed to
avoid a wrong scrubbing of the configuration memory.

REFERENCES
[1] V. Chandra and R. Aitken, “Impact of Technology and Voltage Scaling

on the Soft Error Susceptibility in Nanoscale CMOS,” in 2008 IEEE Int.
Symp. on Defect and Fault Tolerance of VLSI Systems, 2008, pp. 114–
122.

[2] H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui, “Radiation-
induced multi-bit upsets in SRAM-based FPGAs,” IEEE Trans. Nucl.
Sci., vol. 52, no. 6, pp. 2455–2461, Dec. 2005.

[3] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and K.
Lundgreen, “Domain Crossing Errors: Limitations on Single Device
Triple-Modular Redundancy Circuits in Xilinx FPGAs,” in IEEE Trans.
Nucl. Sci., vol. 54, no. 6, pp. 2037–2043, Dec. 2007.

[4] M. J. Wirthlin, H. Takai, and A. Harding, “Soft error rate estimations of
the Kintex-7 FPGA within the ATLAS Liquid Argon (LAr)
Calorimeter,” J. Instrum., vol. 9, no. 01, pp. C01025–C01025, Jan. 2014.

[5] I. Herrera-Alzu and M. Lopez-Vallejo, “Design Techniques for Xilinx
Virtex FPGA Configuration Memory Scrubbers,” in IEEE Trans. Nucl.
Sci., vol. 60, no. 1, pp. 376–385, Feb. 2013.

[6] J. Tonfat, F. L. Kastensmidt, R. Reis, “Energy Efficient Frame-level
Redundancy Scrubbing Technique for SRAM-based FPGAs,” in 2015
NASA/ESA Conf. on Adaptive Hardware and Systems (AHS), 2015.

[7] P. S. Ostler, M. P. Caffrey, D. S. Gibelyou, P. S. Graham, K. S. Morgan,
B. H. Pratt, H. M. Quinn, and M. J. Wirthlin, “SRAM FPGA Reliability
Analysis for Harsh Radiation Environments,” in IEEE Trans. Nucl. Sci.,
vol. 56, no. 6, pp. 3519–3526, Dec. 2009.

[8] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. a. LaBel, M.
Friendlich, H. Kim, and A. Phan, “Effectiveness of Internal Versus
External SEU Scrubbing Mitigation Strategies in a Xilinx FPGA:
Design, Test, and Analysis,” in IEEE Trans. Nucl. Sci., vol. 55, no. 4,
pp. 2259–2266, Aug. 2008.

[9] Xilinx Inc., Virtex-5 Configuration User Guide UG191 (v3.11), 2012.
[10] J. Heiner, N. Collins, and M. Wirthlin, “Fault Tolerant ICAP Controller

for High-Reliable Internal Scrubbing,” in 2008 IEEE Aerospace Conf.,
2008.

[11] U. Legat, A. Biasizzo, and F. Novak, “SEU recovery mechanism for
SRAM-Based FPGAs,” in IEEE Trans. Nucl. Sci., vol. 59, no. 5 PART
3, pp. 2562–2571, Oct. 2012.

[12] Xilinx Inc., LogiCORE IP Soft Error Mitigation Controller v4.0, 2013.
[13] I. Herrera-Alzu and M. López-Vallejo, “Self-reference scrubber for

TMR systems based on Xilinx Virtex FPGAs,” in Lecture Notes in
Computer Science, 2011, vol. 6951 LNCS, pp. 133–142.

[14] P. M. B. Rao, M. Ebrahimi, R. Seyyedi, and M. B. Tahoori, “Protecting
SRAM-based FPGAs Against Multiple Bit Upsets Using Erasure
Codes,” in Proc. 51st Annu. Des. Autom. Conf. Des. Autom. Conf. -
DAC’14, pp. 1–6, 2014.

[15] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B.
Hutchings, “RapidSmith: Do-It-Yourself CAD Tools for Xilinx
FPGAs,” in 2011 21st Int. Conf. F. Program. Log. Appl., pp. 349–355,
Sep. 2011.

[16] A. K. Chapman, “SEU Strategies for Virtex-5 Devices,” XAPP864 v2.0,
2010.

[17] E. Yang, K. Huang, Y. Hu, X. Li, J. Gong, H. Liu, and B. Liu, “HHC:
Hierarchical hardware checkpointing to accelerate fault recovery for
SRAM-based FPGAs,” in Proceedings of the 2013 IEEE 19th
International On-Line Testing Symposium, IOLTS 2013, 2013, pp. 193–
198.

[18] M. Violante, L. Sterpone, A. Manuzzato, S. Gerardin, P. Rech, M.
Bagatin, A. Paccagnella, C. Andreani, G. Gorini, A. Pietropaolo, G.
Cardarilli, S. Pontarelli, and C. Frost, “A New Hardware/Software
Platform and a New 1/E Neutron Source for Soft Error Studies: Testing
FPGAs at the ISIS Facility,” IEEE Trans. Nucl. Sci., vol. 54, no. 4, pp.
1184–1189, Aug. 2007.

[19] JEDEC, “Measurement and Reporting of Alpha Particle and Terrestrial
Cosmic Ray-Induced Soft Errors in Semiconductor Devices,” Tech. Rep.
JESD89A, 2006, JEDEC Standard.

[20] J. Tarrillo, J. Tonfat, L. Tambara, F. L. Kastensmidt, and R. Reis,
“Multiple fault injection platform for SRAM-based FPGA based on
ground-level radiation experiments,” in 2015 16th Latin-American Test
Symp. (LATS), 2015, pp. 1–6.

	I. INTRODUCTION
	II. Related Work
	III. Proposed Frame-Level Redundancy Scrubbing Technique (FLR-Scrubbing)
	A. Customized Design Flow
	B. The Scrubbing Technique

	IV. Implementation Results
	A. Area Overhead
	B. Time to Repair One Configuration Frame
	C. Energy Consumption

	V. Experimental Methodology
	A. Device Under Test (DUT) and Neutron beam
	B. Radiation test setup

	VI. Neutron Radiation Results
	VII. Fault Injection Analysis
	VIII. Conclusions And Future Work
	References

